

Нарушение чётности в рассеянии протонов на нуклонах и ядрах при высоких энергиях

А. И. Мильштейн, Н. Н. Николаев, С. Г. Сальников

ИЯФ им. Г. И. Будкера СО РАН Новосибирск

Вопросы поляризационной физики лёгких ядер 29 июня 2022 г.

Слабое взаимодействие в рассеянии протонов на ядрах

- Изучение Р-нечётной асимметрии в сечениях различных процессов является одним из источников информации о структуре слабых взаимодействий.
- Спиновая асимметрия A_L при низких энергиях:
 - ► $A_L(p+p) = (-0.93 \pm 0.21) \cdot 10^{-7}$ при 13.6 МэВ, Bonn
 - ▶ $A_L(p+p) = (-1.7 \pm 0.8) \cdot 10^{-7}$ при 15 МэВ, LANL
 - ► $A_L(p+p) = (-1.57 \pm 0.23) \cdot 10^{-7}$ при 45 МэВ, PSI
 - ► $A_L(p+p) = (0.84 \pm 0.34) \cdot 10^{-7}$ при 221 MэB, TRIUMF
 - $A_L(p+\alpha) = (-3.3 \pm 0.9) \cdot 10^{-7}$ при 46 МэВ, PSI

Данные при высоких энергиях:

► $A_L(p + H_2O) = (2.65 \pm 0.7) \cdot 10^{-6}$ при 5.1 ГэВ, Argonne

Последнее значение выглядит аномально большим и до сих пор не получило удовлетворительного теоретического объяснения.

- Для расчётов при низких энергиях обычно используют потенциалы мезонного обмена с нарушающими чётность вкладами (модель DDH) или EFT модели.
- Вычисления при промежуточных энергиях затруднены, так как применимость и потенциалов мезонного обмена, и КХД под вопросом.

Спиновая асимметрия и кинематика

• Асимметрия определяется соотношением $A = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$

- Мы изучали рассеяние поляризованных протонов на протонных, нейтронных, дейтронных, углеродных и кислородных мишенях.
- Мы рассматривали типичную для коллайдера NICA кинематику:

$$p_{\text{lab}} = 6 \,\Gamma \vartheta \mathbf{B} / c \,, \qquad s = 4\varepsilon^2 = 13 \,\Gamma \vartheta \mathbf{B}^2$$

При расчётах мы полагали $s \gg 1 \Gamma \mathfrak{g} B^2$, но $s \ll m_W^2$.

• Нуклоны высоких энергий рассеиваются внутри дифракционного конуса, $\theta \ll 1$. Поэтому мы считаем $\theta_{13} \ll 1$ и $\theta_{24} \ll 1$.

Слабый гамильтониан

Затравочный слабый гамильтониан нуклон-нуклонного взаимодействия:

$$\begin{split} H_W^{(0)} &= -\frac{G_F}{\sqrt{2}} \left(j_{\mu}^{\rm ch} j_{\mu}^{\rm ch} + j_{\mu}^0 j_{\mu}^0 \right) \\ j_{\mu}^{\rm ch} &= \cos \theta_c \Big\{ \bar{U}_p \gamma_\mu \left(1 + g_A \gamma_5 \right) U_n + \bar{U}_n \gamma_\mu \left(1 + g_A \gamma_5 \right) U_p \Big\}, \\ j_{\mu}^0 &= \bar{U}_n \gamma_\mu U_n + g_A \bar{U}_n \gamma_\mu \gamma_5 U_n - \left(1 - 4\xi \right) \bar{U}_p \gamma_\mu U_p - g_A \bar{U}_p \gamma_\mu \gamma_5 U_p \,, \end{split}$$

где мы пренебрегаем слабым магнетизмом.

$$g_A = 1.267$$
 $\cos \theta_c = 0.974$
 $G_F = \frac{10^{-5}}{M_p^2}$ $\xi = \sin^2 \theta_W = 0.2383$

Борновский вклад (pn рассеяние)

Р-нечётные вклады возникают из произведения векторного и аксиального токов. В *pn* рассеяние дают вклад и нейтральный, и заряженный токи.

$$\begin{array}{c} p_{1} & p_{3} \\ & H_{PNC}^{p_{1}} = \frac{g_{A}G_{F}}{\sqrt{2}} \cdot \bar{U}_{p_{3}}\gamma_{\mu}\gamma_{5}U_{p_{1}} \cdot \bar{U}_{n_{4}}\gamma_{\mu}U_{n_{2}} \\ & + \frac{g_{A}G_{F}}{\sqrt{2}} \left(1 - 4\xi\right)\bar{U}_{p_{3}}\gamma_{\mu}U_{p_{1}} \cdot \bar{U}_{n_{4}}\gamma_{\mu}\gamma_{5}U_{n_{2}} \\ & p_{1} & - \frac{g_{A}G_{F}}{\sqrt{2}}\cos^{2}\theta_{c} \cdot \bar{U}_{n_{4}}\gamma_{\mu}\gamma_{5}U_{p_{1}} \cdot \bar{U}_{p_{3}}\gamma_{\mu}U_{n_{2}} \\ & - \frac{g_{A}G_{F}}{\sqrt{2}}\cos^{2}\theta_{c} \cdot \bar{U}_{n_{4}}\gamma_{\mu}U_{p_{1}} \cdot \bar{U}_{p_{3}}\gamma_{\mu}\gamma_{5}U_{n_{2}} \\ & - \frac{g_{A}G_{F}}{\sqrt{2}}\cos^{2}\theta_{c} \cdot \bar{U}_{n_{4}}\gamma_{\mu}U_{p_{1}} \cdot \bar{U}_{p_{3}}\gamma_{\mu}\gamma_{5}U_{n_{2}} \end{array}$$

 $1 - 4\xi = 0.047 \ll 1$

Этим слагаемым пренебрегаем

Борновский вклад (*pp* рассеяние)

Только нейтральные токи дают вклад в *pp* рассеяние в борновском приближении.

m

$$H_{PNC}^{p_{1}} = -\frac{g_{A}G_{F}}{\sqrt{2}} (1 - 4\xi) \bar{U}_{p_{3}} \gamma_{\mu} \gamma_{5} U_{p_{1}} \cdot \bar{U}_{p_{4}} \gamma_{\mu} U_{p_{2}}$$

$$-\frac{g_{A}G_{F}}{\sqrt{2}} (1 - 4\xi) \bar{U}_{p_{3}} \gamma_{\mu} U_{p_{1}} \cdot \bar{U}_{p_{4}} \gamma_{\mu} \gamma_{5} U_{p_{2}}$$

$$\frac{p_{1}}{p_{2}} \qquad +\frac{g_{A}G_{F}}{\sqrt{2}} (1 - 4\xi) \bar{U}_{p_{4}} \gamma_{\mu} \gamma_{5} U_{p_{1}} \cdot \bar{U}_{p_{3}} \gamma_{\mu} U_{p_{2}}$$

$$+\frac{g_{A}G_{F}}{\sqrt{2}} (1 - 4\xi) \bar{U}_{p_{4}} \gamma_{\mu} U_{p_{1}} \cdot \bar{U}_{p_{3}} \gamma_{\mu} \gamma_{5} U_{p_{2}}$$

 $1 - 4\xi = 0.047 \ll 1$

Все Р-нечётные вклады в *pp* рассеяние подавлены в борновском приближении.

С. Г. Сальников (ИЯФ СО РАН)

m

Нарушение чётности в рассеянии протонов на ядрах

Сильные поправки к борновским амплитудам

 Короткодействующее сильное взаимодействие учитывается введением векторного и аксиального форм-фактора в каждой вершине.
 В дипольном приближении

$$F_V(q^2) = \frac{1}{\left(1 - q^2/M_V^2\right)^2}, \quad F_A(q^2) = \frac{1}{\left(1 - q^2/M_A^2\right)^2}, \quad M_V \approx M_A \approx 1 \,\Gamma$$
 \Rightarrow B

• Р-нечётный вклад для *pn* рассеяния

$$H_{PNC}^{pn} = \frac{g_A G_F}{\sqrt{2}} F_V \left(p_3 - p_1 \right) F_A \left(p_3 - p_1 \right) \cdot \bar{U}_{p_3} \gamma_\mu \gamma_5 U_{p_1} \cdot \bar{U}_{n_4} \gamma_\mu U_{n_2} - \frac{g_A G_F}{\sqrt{2}} \cos^2 \theta_c F_V \left(p_4 - p_1 \right) F_A \left(p_4 - p_1 \right) \cdot \bar{U}_{n_4} \gamma_\mu \gamma_5 U_{p_1} \cdot \bar{U}_{p_3} \gamma_\mu U_{n_2} - \frac{g_A G_F}{\sqrt{2}} \cos^2 \theta_c F_V \left(p_4 - p_1 \right) F_A \left(p_4 - p_1 \right) \cdot \bar{U}_{n_4} \gamma_\mu U_{p_1} \cdot \bar{U}_{p_3} \gamma_\mu \gamma_5 U_{n_2}$$

При рассеянии на малые углы $p_3 \approx p_1$, $F(p_3 - p_1) \approx 1$, $F(p_4 - p_1) \ll 1$.

Для pn рассеяния важны только нейтральные токи.

С. Г. Сальников (ИЯФ СО РАН)

Нарушение чётности в рассеянии протонов на ядрах

Сильные поправки к амплитуде *pp* рассеяния

• Дальнодействующее сильное взаимодействие можно описывать обменом мезонами.

В пределе высоких энергий основной вклад от обмена ρ -мезоном

$$L_{\rho} = -g_{\rho}\bar{N}\gamma_{\mu}\boldsymbol{\tau}\boldsymbol{\rho}_{\mu}N + \frac{f_{\rho}}{2M_{p}}\bar{N}\sigma_{\mu\nu}\boldsymbol{\tau}\left(\partial_{\nu}\rho_{\mu}\right)N, \quad \frac{g_{\rho}^{2}}{4\pi} = 0.84, \frac{f_{\rho}}{g_{\rho}} = 6.1 \text{ (CD Bonn)}$$

Диаграмма с H^0 даёт вклад в перенормировку нейтрального тока и не должна учитываться отдельно.

Сильные поправки к амплитуде *pp* рассеяния

Основной вклад в Р-нечётный гамильтониан для pp рассеяния

$$H_{1234}^{\rm ch} = -\frac{g_A G_F}{\sqrt{2}} \cos^2 \theta_c \,\mathcal{F} \left(p_3 - p_1\right) \times \\ \times \left\{ \bar{U}_{p_3} \gamma_\mu U_{p_1} \cdot \bar{U}_{p_4} \gamma_\mu \gamma_5 U_{p_2} + \bar{U}_{p_3} \gamma_\mu \gamma_5 U_{p_1} \cdot \bar{U}_{p_4} \gamma_\mu U_{p_2} \right\}$$

$$\begin{split} \mathcal{F}(q) &\approx \frac{g_{\rho}^2}{4\pi^3} \ln\left(\frac{s}{M_V^2}\right) R_{\rho}(\boldsymbol{q}_{\perp}) \\ R_{\rho}(\boldsymbol{q}_{\perp}) &= \int d^2 \boldsymbol{k}_{\perp} \frac{F_V\left(\boldsymbol{k}_{\perp}\right) F_A\left(\boldsymbol{k}_{\perp}\right)}{\left(\boldsymbol{k}_{\perp} - \boldsymbol{q}_{\perp}\right)^2 + m_{\rho}^2}, \qquad R_{\rho}(0) \approx 1 \end{split}$$

- Остальные вклады подавлены в пределе $s \gg 1 \Gamma \mathfrak{g} B^2$.
- Вклад пионного обмена не содержит логарифмического усиления при больших *s*, поэтому не так важен в пределе высоких энергий. Однако при низких энергиях такие вклады могут стать важными.

Слабые амплитуды

При высоких энергиях нуклонов и малых углах рассеяния:

• Амплитуда протон-протонного рассеяния

$$T_W^{pp}(\boldsymbol{q}) = \frac{2}{\pi^3} g_\rho^2 \frac{g_A G_F}{\sqrt{2}} \cos^2 \theta_c R_\rho(\boldsymbol{q}_\perp) \ln\left(\frac{s}{M_V^2}\right) \lambda_1 \delta_{\lambda_1 \lambda_2} \delta_{\lambda_1 \lambda_3} \delta_{\lambda_2 \lambda_4}$$

• Амплитуда протон-нейтронного рассеяния

$$T_W^{pn}(\boldsymbol{q}) = -2 \frac{g_A G_F}{\sqrt{2}} \frac{1}{\left(1 + \boldsymbol{q}^2 / M_V^2\right)^4} \lambda_1 \delta_{\lambda_1 \lambda_3} \delta_{\lambda_2 \lambda_4}$$

 λ_i — спиральности частиц

Зависимости амплитуд $T_W^{pp}(\boldsymbol{q})$ и $T_W^{pn}(\boldsymbol{q})$ от спиральностей различаются!

Сильные амплитуды

Для наших целей достаточно амплитуд, не зависящих от спинов:

$$\begin{split} T_{S}^{pp}(\boldsymbol{q}) &= -\left(\epsilon_{pp}+i\right)\sigma_{pp}^{\text{tot}} \cdot e^{-\beta_{pp}^{2}q^{2}/2}, \qquad \beta_{pp}^{2} = \frac{\left(1+\epsilon_{pp}^{2}\right)\left(\sigma_{pp}^{\text{tot}}\right)^{2}}{16\pi\sigma_{pp}^{\text{el}}}\\ \sigma_{pp}^{\text{tot}} &= 41\,\text{MG}, \qquad \sigma_{pp}^{\text{el}} = 12\,\text{MG}, \qquad \epsilon_{pp} = -0.34 \qquad \text{при } p_{\text{lab}} = 6\,\Gamma\text{sB}/c\\ T_{S}^{pn}(\boldsymbol{q}) &= -\left(\epsilon_{pn}+i\right)\sigma_{pn}^{\text{tot}} \cdot e^{-\beta_{pn}^{2}q^{2}/2}, \qquad \beta_{pn}^{2} = \frac{\left(1+\epsilon_{pn}^{2}\right)\left(\sigma_{pn}^{\text{tot}}\right)^{2}}{16\pi\sigma_{pn}^{\text{el}}} \end{split}$$

 $\sigma_{pn}^{\rm tot} = 43$ мб, $\sigma_{pn}^{\rm el} = 10$ мб, $\epsilon_{pn} = -0.37$ при $p_{\rm lab} = 6$ ГэВ/c

Параметры амплитуд pp и pn рассеяния можно считать равными.

В этой параметризации отношение вещественной и мнимой частей амплитуд не зависит от переданного импульса.

Приближение эйконала

Запишем амплитуду рассеяния при высоких энергиях:

$$T(\boldsymbol{q}) = -2i \int d^2 \boldsymbol{\rho} \, e^{i\boldsymbol{q}\boldsymbol{\rho}} \left(1 - e^{i\chi(\boldsymbol{\rho})}\right), \qquad \chi(\boldsymbol{\rho}) = \chi_S(\boldsymbol{\rho}) + \chi_W(\boldsymbol{\rho}), \quad \chi_W \ll 1$$

$$T(\boldsymbol{q}) = T_S(\boldsymbol{q}) + T_W(\boldsymbol{q}) + T_{\text{int}}(\boldsymbol{q})$$
$$T_{\text{int}}(\boldsymbol{q}) = -\frac{i}{2} \int \frac{d^2 \boldsymbol{q}'}{(2\pi)^2} T_S(\boldsymbol{q}') T_W(\boldsymbol{q} - \boldsymbol{q}')$$

Последнее слагаемое описывает абсорбциионную поправку к слабой амплитуде за счёт сильного взаимодействия.

В нашем подходе $T_W(q)$ вещественная, но $T_{\text{int}}(q)$ – комплексная.

Сечения рассеяния

• Полное сечение связано с амплитудой оптической теоремой

$$\sigma^{\text{tot}} = -\operatorname{Im} T(0) = \sigma_S^{\text{tot}} + \delta \sigma^{\text{tot}}$$
$$\delta \sigma^{\text{tot}} = -\operatorname{Im} \left[T_W(0) + T_{\text{int}}(0) \right] = \operatorname{Re} \int \frac{d^2 \boldsymbol{q}}{8\pi^2} T_S(\boldsymbol{q}) T_W(\boldsymbol{q})$$

• Упругое сечение равно

$$\sigma^{\mathrm{el}} = \int \frac{d^2 \boldsymbol{q}}{(4\pi)^2} |T(\boldsymbol{q})|^2 = \sigma_S^{\mathrm{el}} + \delta \sigma^{\mathrm{el}}$$
$$\delta \sigma^{\mathrm{el}} = \int \frac{d^2 \boldsymbol{q}}{8\pi^2} \operatorname{Re} \left[T_S(\boldsymbol{q}) \left(T_W(\boldsymbol{q}) + T_{\mathrm{int}}^*(\boldsymbol{q}) \right) \right] = \operatorname{Re} \int \frac{d^2 \boldsymbol{q}}{8\pi^2} T_S(\boldsymbol{q}) T_W(\boldsymbol{q})$$

 $\delta\sigma^{\rm el} = \delta\sigma^{\rm tot}$

 $\left. \begin{array}{c} T_{S}(\boldsymbol{q}) \propto \epsilon + i \\ T_{\mathrm{int}}(\boldsymbol{q}) \propto 1 - i\epsilon \end{array} \right\} \implies T_{S}(\boldsymbol{q}) T_{\mathrm{int}}^{*}(\boldsymbol{q}) \propto (\epsilon + i) \left(1 + i\epsilon\right) = \boldsymbol{i} \left(1 + \epsilon^{2}\right)$

Более аккуратная параметризация сильной амплитуды приводит к появлению малого вклада $T_{\rm int}(q)$ в упругое сечение рассеяния.

Асимметрии в *pp* и *pn* рассеянии

• Для протон-протонного рассеяния

$$\sigma_{++} = \sigma_S + \delta \sigma_{pp} , \qquad \sigma_{--} = \sigma_S - \delta \sigma_{pp} , \qquad \sigma_{+-} = \sigma_{-+} = \sigma_S$$
$$A_{pp} = \frac{1}{2} \frac{\delta \sigma_{pp}}{\sigma_S}$$
$$A_{pp}^{\text{tot}} \sim 0.3 \cdot 10^{-7} , \qquad A_{pp}^{\text{el}} \sim 1 \cdot 10^{-7} \qquad \text{при } p_{\text{lab}} = 6 \,\Gamma \mathfrak{sB}/c$$

• Для протон-нейтронного рассеяния

$$\begin{split} \sigma_{++} &= \sigma_{+-} = \sigma_S + \delta \sigma_{pn} \,, \qquad \sigma_{--} = \sigma_{-+} = \sigma_S - \delta \sigma_{pn} \\ A_{pn} &= \frac{\delta \sigma_{pn}}{\sigma_S} \\ A_{pn}^{\rm tot} &\sim -0.3 \cdot 10^{-7} \,, \qquad A_{pn}^{\rm el} \sim -1.3 \cdot 10^{-7} \quad \text{при } p_{\rm lab} = 6 \, \Gamma \mathfrak{p} \mathrm{B}/c \end{split}$$

Асимметрии в полных сечениях *pp* и *pn* рассеяния подавлены по сравнению с асимметриями в упругих сечениях.

А.И. Мильштейн, Н.Н. Николаев, С.Г. Сальников, Письма в ЖЭТ
Ф 111, 215 (2020).

Асимметрии в *pp* и *pn* рассеянии

А_{pp} и *А_{pn}* имеют разный знак.

pd рассеяние

- На коллайдере NICA также возможно исследование рассеяния протонов на дейтронах.
- Рассматриваются две возможности:
 - Рассеяние поляризованных протонов на неполяризованных дейтронах
 - Рассеяние поляризованных дейтронов на неполяризованных протонах
- На коллайдере NICA дейтроны могут ускоряться до кинетической энергии 5.6 ГэВ на нуклон.
- Ускорение поляризованных дейтронов предпочтительнее, так как дейтроны не имеют спиновых резонансов в области энергий NICA, тогда как у протонов множество резонансов.

Приближение Глаубера для pd рассеяния

• В приближении Глаубера амплитуда упругого pd рассеяния равна

$$T^{pd}(\boldsymbol{q}) = \left[T^{pp}(\boldsymbol{q}) + T^{pn}(\boldsymbol{q})\right] S\left(\frac{\boldsymbol{q}}{2}\right) - \frac{i}{2} \int \frac{d^2\boldsymbol{q}'}{(2\pi)^2} T^{pp}\left(\frac{\boldsymbol{q}}{2} + \boldsymbol{q}'\right) T^{pn}\left(\frac{\boldsymbol{q}}{2} - \boldsymbol{q}'\right) S(\boldsymbol{q}')$$

 $S(\boldsymbol{q}) = \int d^3 \boldsymbol{r} \left| \psi(\boldsymbol{r}) \right|^2 e^{-i \boldsymbol{q} \boldsymbol{r}}$ — форм-фактор дейтрона

• Сечения рассеяния

$$\sigma_{pd}^{\text{tot}} = -\operatorname{Im} T^{pd}(0), \quad \sigma_{pd}^{\text{el}} = \int \frac{d^2 q}{(4\pi)^2} \left| T^{pd}(q) \right|^2, \quad \sigma_{pd}^{\text{qel}} = \int \frac{d^2 q}{(4\pi)^2} \sum_{f \neq i} |\langle f | T | i \rangle|^2$$

Сечение квази-упругого рассеяния $\sigma_{pd}^{\rm qel}$ соответствует процессам, сопровождаемым распадом дейтрона.

• При $p_{\text{lab}} = 6 \Gamma \Im B/c$ сильные сечения равны

$$\sigma_{pd}^{\rm tot}\approx 75\,{\rm mG}\,,\qquad \sigma_{pd}^{\rm el}\approx 8\,{\rm mG}\,,\qquad \sigma_{pd}^{\rm qel}\approx 6\,{\rm mG}$$

Слабые поправки к амплитуде pd рассеяния

$$\begin{split} T^{pd}(\boldsymbol{q}) &= T^{pd}_{S}(\boldsymbol{q}) + T^{pd}_{W}(\boldsymbol{q}) \,, \\ T^{pd}_{W}(\boldsymbol{q}) &= \left[T^{pp}_{W}(\boldsymbol{q}) + T^{pn}_{W}(\boldsymbol{q}) \right] S\left(\frac{\boldsymbol{q}}{2}\right) \\ &- \frac{i}{2}S\left(\frac{\boldsymbol{q}}{2}\right) \int \frac{d^{2}\boldsymbol{q}'}{\left(2\pi\right)^{2}} T_{S}(\boldsymbol{q}') \Big[T^{pp}_{W}(\boldsymbol{q}-\boldsymbol{q}') + T^{pn}_{W}(\boldsymbol{q}-\boldsymbol{q}') \Big] \\ &- \frac{i}{2} \int \frac{d^{2}\boldsymbol{q}'}{\left(2\pi\right)^{2}} T_{S}\left(\frac{\boldsymbol{q}}{2}-\boldsymbol{q}'\right) \left[T^{pp}_{W}\left(\frac{\boldsymbol{q}}{2}+\boldsymbol{q}'\right) + T^{pn}_{W}\left(\frac{\boldsymbol{q}}{2}+\boldsymbol{q}'\right) \right] S(\boldsymbol{q}') \\ &- \frac{1}{4} \int \frac{d^{2}\boldsymbol{q}'d^{2}\boldsymbol{q}''}{\left(2\pi\right)^{4}} T_{S}\left(\frac{\boldsymbol{q}}{2}-\boldsymbol{q}'\right) T_{S}\left(\frac{\boldsymbol{q}}{2}-\boldsymbol{q}''\right) S(\boldsymbol{q}') \Big[T^{pp}_{W}\left(\boldsymbol{q}'+\boldsymbol{q}''\right) + T^{pn}_{W}\left(\boldsymbol{q}'+\boldsymbol{q}''\right) \Big] \end{split}$$

Два последних интеграла подавлены по сравнению с остальными.

Слабые вклады в различные сечения рассеяния связаны друг с другом:

$$\delta\sigma^{\rm tot} \approx \delta\sigma^{\rm el} + \delta\sigma^{\rm qel} \qquad \Longrightarrow \qquad \delta\sigma^{\rm inel} \approx 0$$

Асимметрии в *pd* рассеянии

Сечения $\sigma_{\lambda_p \lambda_d}$ равны

- $$\begin{split} \sigma_{++} &= \sigma_S + \delta \sigma_{pp} + \delta \sigma_{pn} \,, \qquad \sigma_{+-} &= \sigma_S + \delta \sigma_{pn} \,, \qquad \sigma_{+0} &= \sigma_S + \frac{1}{2} \delta \sigma_{pp} + \delta \sigma_{pn} \,, \\ \sigma_{--} &= \sigma_S \delta \sigma_{pp} \delta \sigma_{pn} \,, \qquad \sigma_{-+} &= \sigma_S \delta \sigma_{pn} \,, \qquad \sigma_{-0} &= \sigma_S \frac{1}{2} \delta \sigma_{pp} \delta \sigma_{pn} \,. \end{split}$$
 - Поляризованные дейтроны при $p_{\text{lab}} = 6 \Gamma_{9} \text{B}/c$ на нуклон, неполяризованная протонная мишень

$$\begin{split} A_{p,d\uparrow} &= \frac{\frac{1}{2} \delta \sigma_{pp}}{\sigma_S} \\ A_{p,d\uparrow}^{\rm tot} \sim 0.1 \cdot 10^{-7} \,, \quad A_{p,d\uparrow}^{\rm el} \sim 0.4 \cdot 10^{-7} \,, \quad A_{p,d\uparrow}^{\rm qel} \sim 0.9 \cdot 10^{-7} \\ \bullet \ \text{Поляризованные протоны при } p_{\rm lab} &= 6 \, \Gamma \text{эB}/c, \end{split}$$

неполяризованная дейтронная мишень

$$A_{p\uparrow,d} = \frac{\frac{1}{2}\delta\sigma_{pp} + \delta\sigma_{pn}}{\sigma_S}$$
$$A_{p\uparrow,d}^{\text{tot}} \sim -0.02 \cdot 10^{-7} , \quad A_{p\uparrow,d}^{\text{el}} \sim -0.3 \cdot 10^{-7} , \quad A_{p\uparrow,d}^{\text{qel}} \sim 0.2 \cdot 10^{-7}$$

А.И. Мильштейн, Н.Н. Николаев, С.Г. Сальников, Письма в ЖЭТФ 112, 352 (2020).

Асимметрии в *pd* рассеянии

Ядра углерода 12 С и кислорода 16 О

- И ядра ¹²С, и ¹⁶О имеют нулевой спин.
- Форм-факторы нуклонов в s- и p-состояниях в модели оболочек равны

$$S_s(\boldsymbol{q}) = e^{-\frac{1}{4}R^2q^2}, \qquad S_p(\boldsymbol{q}) = \left(1 - \frac{1}{6}R^2q^2\right)e^{-\frac{1}{4}R^2q^2}$$

Для расчётов можно использовать средний ядерный форм-фактор

$$S(\boldsymbol{q}) = \frac{2}{Z}S_s(\boldsymbol{q}) + \frac{Z-2}{Z}S_p(\boldsymbol{q}) = \left(1 - \frac{Z-2}{6Z}R^2q^2\right)e^{-\frac{1}{4}R^2q^2}$$

Углерод: $Z = 6, R = 1.6 \, \text{фм}$ Кислород: $Z = 8, R = 1.7 \, \text{фм}$

Рассеяние протонов на ядрах

В приближении Глаубера амплитуда упругого рассеяния равна

$$T(\boldsymbol{q}) \approx -2i \int d^2 \boldsymbol{\rho} \, e^{i\boldsymbol{q}\boldsymbol{\rho}} \left(1 - e^{i\chi(\boldsymbol{\rho})}\right)$$
$$\chi(\boldsymbol{\rho}) = -\frac{1}{2} \sum_{j=1}^{2Z} \int \frac{d^2 \boldsymbol{q}}{\left(2\pi\right)^2} \, e^{-i\boldsymbol{q}\boldsymbol{\rho}} \, T_j(\boldsymbol{q}) S_j(\boldsymbol{q})$$

Полное, упругое и квази-упругое сечения рассеяния равны

$$\sigma^{\text{tot}} = 2 \int d^2 \rho \left(1 - \operatorname{Re} e^{i\chi(\rho)} \right)$$

$$\sigma^{\text{el}} = 2 \int d^2 \rho \left[1 - \operatorname{Re} e^{i\chi(\rho)} - \frac{1}{2} \left(1 - e^{-2\operatorname{Im}\chi(\rho)} \right) \right]$$

$$\sigma^{\text{qel}} = \int d^2 \rho \, e^{-2\operatorname{Im}\chi(\rho)} \left(e^{\Omega(\rho)} - 1 \right)$$

$$\Omega(\rho) = \frac{1}{4} \sum_{j=1}^{2Z} \int \frac{d^2 q}{(2\pi)^2} \frac{d^2 q'}{(2\pi)^2} e^{-i(q-q')\rho} T_j(q) T_j^*(q') S_j(q-q')$$

Сечение $\sigma^{\rm qel}$ соответствует возбуждению или распаду ядер.

Асимметрии в рассеянии протонов на ядрах

$$\delta\sigma^{\text{tot}} = \delta\sigma^{\text{el}} = 2\,\text{Im}\int d^2\rho\,e^{i\chi_S(\rho)}\chi_W(\rho)\,,\qquad \delta\sigma^{\text{qel}} = \int d^2\rho\,e^{-2\,\text{Im}\,\chi_S(\rho)}e^{\Omega_S(\rho)}\Omega_W(\rho)$$

$$\chi_W(\rho) = -\frac{Z}{2} \int \frac{d^2 q}{(2\pi)^2} e^{-iq\rho} S(q) \left[\frac{1}{2} T_W^{pp}(q) + T_W^{pn}(q) \right]$$

$$\Omega_W(\rho) = \frac{Z}{2} \operatorname{Re} \int \frac{d^2 q}{(2\pi)^2} \frac{d^2 q'}{(2\pi)^2} e^{-i(q-q')\rho} S(q-q') T_S^*(q') \left[\frac{1}{2} T_W^{pp}(q) + T_W^{pn}(q) \right]$$

• Рассеяние протонов на углероде при $p_{\rm lab}=6\,\Gamma \Im {\rm B}/c$

$$\begin{split} \sigma_{p{\rm C}}^{\rm tot} \sim 347\,{\rm mG}\,, \quad \sigma_{p{\rm C}}^{\rm el} \sim 86\,{\rm mG}\,, \quad \sigma_{p{\rm C}}^{\rm qel} \sim 20\,{\rm mG}\\ A_{p{\rm C}}^{\rm tot} \sim -0.8\cdot 10^{-8}\,, \quad A_{p{\rm C}}^{\rm el} \sim -3.5\cdot 10^{-8}\,, \quad A_{p{\rm C}}^{\rm qel} \sim 1.5\cdot 10^{-8} \end{split}$$

• Рассеяние протонов на кислороде при $p_{\rm lab}=6\,\Gamma {\rm yB}/c$

$$\begin{split} \sigma_{p{\rm O}}^{\rm tot} \sim 443\,{\rm mb}\,, \quad \sigma_{p{\rm O}}^{\rm el} \sim 117\,{\rm mb}\,, \quad \sigma_{p{\rm O}}^{\rm qel} \sim 24\,{\rm mb}\\ A_{p{\rm O}}^{\rm tot} \sim -0.9\cdot 10^{-8}\,, \quad A_{p{\rm O}}^{\rm el} \sim -3.6\cdot 10^{-8}\,, \quad A_{p{\rm O}}^{\rm qel} \sim 1.7\cdot 10^{-8} \end{split}$$

А.И. Мильштейн, Н.Н. Николаев, С.Г. Сальников, Письма в ЖЭТФ 114, 631 (2021).

Асимметрии в рассеянии протонов на ядрах

Заключение

- Показано, что при высоких энергиях слабая амплитуда T_W^{pp} имеет тот же порядок, что и амплитуда T_W^{pn} из-за поправок, связанных с обменом мезонами.
- В рамках глауберовского приближения получены различные асимметрии в сечениях *pp*, *pn*, *pd*, *p*С и *p*O рассеяния.
- Для *pp* и *pn* рассеяния:
 - Асимметрии в сечениях *pp* и *pn* рассеяния отличаются знаком, но близки по абсолютной величине. Ожидается асимметрия порядка 10⁻⁷.
 - Асимметрии в упругом сечении должны быть больше, чем в полном сечении рассеяния.

Заключение

- Для *pd* рассеяния:
 - Асимметрии в упругом и квази-упругом сечениях больше, чем в полном сечении рассеяния. Все асимметрии имеют порядок 10⁻⁷.
 - Асимметрии при рассеянии пучка поляризованных протонов на неполяризованной дейтронной мишени подавлены из-за частичного сокращения протонного и нейтронного вкладов.
 - В случае рассеяния поляризованного пучка дейтронов на неполяризованной протонной мишени это сокращение отсутствует.
- Для *p*С и *p*О рассеяния:
 - Асимметрии в упругом и квази-упругом сечениях больше, чем в полном сечении рассеяния. Все асимметрии не превосходят 10⁻⁷.
 - Асимметрии при рассеянии пучка поляризованных протонов на таких мишенях также подавлены из-за частичного сокращения протонного и нейтронного вкладов.
 - Мы не ожидаем усиления асимметрии из-за большого числа нуклонов в ядрах.
- Во всех случаях асимметрия A^{inel} в неупругих процессах с рождением мезонов мала по сравнению с асимметриями в остальных процессах.